使用批量 API 进行批量处理

2024 年 4 月 24 日
在 Github 中打开

新的批量 API 允许以更低的价格和更高的速率限制创建异步批量作业

批量处理将在 24 小时内完成,但可能会根据全局使用情况更快完成。

批量 API 的理想用例包括

  • 在市场或博客上标记、添加字幕或丰富内容
  • 对支持票证进行分类并建议答案
  • 对大量客户反馈数据集执行情感分析
  • 为文档或文章集合生成摘要或翻译

以及更多!

本食谱将引导您了解如何通过几个实际示例使用批量 API。

我们将从一个使用 gpt-4o-mini 对电影进行分类的示例开始,然后介绍如何使用此模型的视觉功能为图像添加字幕。

请注意,可以通过批量 API 使用多种模型,并且您可以在批量 API 调用中使用与聊天完成端点相同的参数。

# Make sure you have the latest version of the SDK available to use the Batch API
%pip install openai --upgrade
import json
from openai import OpenAI
import pandas as pd
from IPython.display import Image, display
# Initializing OpenAI client - see https://platform.openai.com/docs/quickstart?context=python
client = OpenAI()

第一个示例:电影分类

在此示例中,我们将使用 gpt-4o-mini 从电影描述中提取电影类别。我们还将从此描述中提取一句摘要。

我们将使用 JSON 模式 以结构化格式提取类别作为字符串数组和一句摘要。

对于每部电影,我们都希望获得如下结果

{
    categories: ['category1', 'category2', 'category3'],
    summary: '1-sentence summary'
}

加载数据

在此示例中,我们将使用 IMDB 前 1000 部电影数据集。

dataset_path = "data/imdb_top_1000.csv"

df = pd.read_csv(dataset_path)
df.head()
Poster_Link Series_Title Released_Year Certificate Runtime Genre IMDB_Rating Overview Meta_score Director Star1 Star2 Star3 Star4 No_of_Votes Gross
0 https://m.media-amazon.com/images/M/MV5BMDFkYT... 肖申克的救赎 1994 A 142 分钟 剧情 9.3 两名被监禁的男子在数年内建立了联系... 80.0 弗兰克·德拉邦特 蒂姆·罗宾斯 摩根·弗里曼 鲍勃·冈顿 威廉·赛德勒 2343110 28,341,469
1 https://m.media-amazon.com/images/M/MV5BM2MyNj... 教父 1972 A 175 分钟 犯罪, 剧情 9.2 一个有组织犯罪王朝的衰老族长 t... 100.0 弗朗西斯·福特·科波拉 马龙·白兰度 阿尔·帕西诺 詹姆斯·凯恩 黛安·基顿 1620367 134,966,411
2 https://m.media-amazon.com/images/M/MV5BMTMxNT... 黑暗骑士 2008 UA 152 分钟 动作, 犯罪, 剧情 9.0 当被称为小丑的威胁肆虐时... 84.0 克里斯托弗·诺兰 克里斯蒂安·贝尔 希斯·莱杰 艾伦·艾克哈特 迈克尔·凯恩 2303232 534,858,444
3 https://m.media-amazon.com/images/M/MV5BMWMwMG... 教父 2 1974 A 202 分钟 犯罪, 剧情 9.0 维托·柯里昂早年的生活和职业生涯在... 90.0 弗朗西斯·福特·科波拉 阿尔·帕西诺 罗伯特·德尼罗 罗伯特·杜瓦尔 黛安·基顿 1129952 57,300,000
4 https://m.media-amazon.com/images/M/MV5BMWU4N2... 十二怒汉 1957 U 96 分钟 犯罪, 剧情 9.0 一位陪审员试图阻止误判... 96.0 西德尼·吕美特 亨利·方达 李·科布 马丁·鲍尔萨姆 约翰·菲德勒 689845 4,360,000

处理步骤

在这里,我们将首先使用聊天完成端点试用请求来准备请求。

一旦我们对结果感到满意,我们就可以继续创建批处理文件。

categorize_system_prompt = '''
Your goal is to extract movie categories from movie descriptions, as well as a 1-sentence summary for these movies.
You will be provided with a movie description, and you will output a json object containing the following information:

{
    categories: string[] // Array of categories based on the movie description,
    summary: string // 1-sentence summary of the movie based on the movie description
}

Categories refer to the genre or type of the movie, like "action", "romance", "comedy", etc. Keep category names simple and use only lower case letters.
Movies can have several categories, but try to keep it under 3-4. Only mention the categories that are the most obvious based on the description.
'''

def get_categories(description):
    response = client.chat.completions.create(
    model="gpt-4o-mini",
    temperature=0.1,
    # This is to enable JSON mode, making sure responses are valid json objects
    response_format={ 
        "type": "json_object"
    },
    messages=[
        {
            "role": "system",
            "content": categorize_system_prompt
        },
        {
            "role": "user",
            "content": description
        }
    ],
    )

    return response.choices[0].message.content
# Testing on a few examples
for _, row in df[:5].iterrows():
    description = row['Overview']
    title = row['Series_Title']
    result = get_categories(description)
    print(f"TITLE: {title}\nOVERVIEW: {description}\n\nRESULT: {result}")
    print("\n\n----------------------------\n\n")
TITLE: The Shawshank Redemption
OVERVIEW: Two imprisoned men bond over a number of years, finding solace and eventual redemption through acts of common decency.

RESULT: {
    "categories": ["drama"],
    "summary": "Two imprisoned men develop a deep bond over the years, ultimately finding redemption through their shared acts of kindness."
}


----------------------------


TITLE: The Godfather
OVERVIEW: An organized crime dynasty's aging patriarch transfers control of his clandestine empire to his reluctant son.

RESULT: {
    "categories": ["crime", "drama"],
    "summary": "An aging crime lord hands over his empire to his hesitant son."
}


----------------------------


TITLE: The Dark Knight
OVERVIEW: When the menace known as the Joker wreaks havoc and chaos on the people of Gotham, Batman must accept one of the greatest psychological and physical tests of his ability to fight injustice.

RESULT: {
    "categories": ["action", "thriller", "superhero"],
    "summary": "Batman faces a formidable challenge as the Joker unleashes chaos on Gotham City."
}


----------------------------


TITLE: The Godfather: Part II
OVERVIEW: The early life and career of Vito Corleone in 1920s New York City is portrayed, while his son, Michael, expands and tightens his grip on the family crime syndicate.

RESULT: {
    "categories": ["crime", "drama"],
    "summary": "The film depicts the early life of Vito Corleone and the rise of his son Michael within the family crime syndicate in 1920s New York City."
}


----------------------------


TITLE: 12 Angry Men
OVERVIEW: A jury holdout attempts to prevent a miscarriage of justice by forcing his colleagues to reconsider the evidence.

RESULT: {
    "categories": ["drama", "thriller"],
    "summary": "A jury holdout fights to ensure justice is served by challenging his fellow jurors to reevaluate the evidence."
}


----------------------------


创建批处理文件

jsonl 格式的批处理文件应包含每行一个请求(json 对象)。每个请求定义如下

{
    "custom_id": <REQUEST_ID>,
    "method": "POST",
    "url": "/v1/chat/completions",
    "body": {
        "model": <MODEL>,
        "messages": <MESSAGES>,
        // other parameters
    }
}

注意:每个批次的请求 ID 应是唯一的。您可以使用它将结果与初始输入文件匹配,因为请求不会按相同顺序返回。

# Creating an array of json tasks

tasks = []

for index, row in df.iterrows():
    
    description = row['Overview']
    
    task = {
        "custom_id": f"task-{index}",
        "method": "POST",
        "url": "/v1/chat/completions",
        "body": {
            # This is what you would have in your Chat Completions API call
            "model": "gpt-4o-mini",
            "temperature": 0.1,
            "response_format": { 
                "type": "json_object"
            },
            "messages": [
                {
                    "role": "system",
                    "content": categorize_system_prompt
                },
                {
                    "role": "user",
                    "content": description
                }
            ],
        }
    }
    
    tasks.append(task)
# Creating the file

file_name = "data/batch_tasks_movies.jsonl"

with open(file_name, 'w') as file:
    for obj in tasks:
        file.write(json.dumps(obj) + '\n')
batch_file = client.files.create(
  file=open(file_name, "rb"),
  purpose="batch"
)
print(batch_file)
FileObject(id='file-lx16f1KyIxQ2UHVvkG3HLfNR', bytes=1127310, created_at=1721144107, filename='batch_tasks_movies.jsonl', object='file', purpose='batch', status='processed', status_details=None)
batch_job = client.batches.create(
  input_file_id=batch_file.id,
  endpoint="/v1/chat/completions",
  completion_window="24h"
)

检查批量状态

注意:这可能需要长达 24 小时,但通常会更快完成。

您可以继续检查,直到状态为“已完成”。

batch_job = client.batches.retrieve(batch_job.id)
print(batch_job)
result_file_id = batch_job.output_file_id
result = client.files.content(result_file_id).content
result_file_name = "data/batch_job_results_movies.jsonl"

with open(result_file_name, 'wb') as file:
    file.write(result)
# Loading data from saved file
results = []
with open(result_file_name, 'r') as file:
    for line in file:
        # Parsing the JSON string into a dict and appending to the list of results
        json_object = json.loads(line.strip())
        results.append(json_object)

读取结果

提醒:结果的顺序与输入文件中的顺序不同。请务必检查 custom_id 以将结果与输入请求匹配

# Reading only the first results
for res in results[:5]:
    task_id = res['custom_id']
    # Getting index from task id
    index = task_id.split('-')[-1]
    result = res['response']['body']['choices'][0]['message']['content']
    movie = df.iloc[int(index)]
    description = movie['Overview']
    title = movie['Series_Title']
    print(f"TITLE: {title}\nOVERVIEW: {description}\n\nRESULT: {result}")
    print("\n\n----------------------------\n\n")
TITLE: American Psycho
OVERVIEW: A wealthy New York City investment banking executive, Patrick Bateman, hides his alternate psychopathic ego from his co-workers and friends as he delves deeper into his violent, hedonistic fantasies.

RESULT: {
    "categories": ["thriller", "psychological", "drama"],
    "summary": "A wealthy investment banker in New York City conceals his psychopathic alter ego while indulging in violent and hedonistic fantasies."
}


----------------------------


TITLE: Lethal Weapon
OVERVIEW: Two newly paired cops who are complete opposites must put aside their differences in order to catch a gang of drug smugglers.

RESULT: {
    "categories": ["action", "comedy", "crime"],
    "summary": "An action-packed comedy about two mismatched cops teaming up to take down a drug smuggling gang."
}


----------------------------


TITLE: A Star Is Born
OVERVIEW: A musician helps a young singer find fame as age and alcoholism send his own career into a downward spiral.

RESULT: {
    "categories": ["drama", "music"],
    "summary": "A musician's career spirals downward as he helps a young singer find fame amidst struggles with age and alcoholism."
}


----------------------------


TITLE: From Here to Eternity
OVERVIEW: In Hawaii in 1941, a private is cruelly punished for not boxing on his unit's team, while his captain's wife and second-in-command are falling in love.

RESULT: {
    "categories": ["drama", "romance", "war"],
    "summary": "A drama set in Hawaii in 1941, where a private faces punishment for not boxing on his unit's team, amidst a forbidden love affair between his captain's wife and second-in-command."
}


----------------------------


TITLE: The Jungle Book
OVERVIEW: Bagheera the Panther and Baloo the Bear have a difficult time trying to convince a boy to leave the jungle for human civilization.

RESULT: {
    "categories": ["adventure", "animation", "family"],
    "summary": "An adventure-filled animated movie about a panther and a bear trying to persuade a boy to leave the jungle for human civilization."
}


----------------------------


第二个示例:图像字幕

在此示例中,我们将使用 gpt-4-turbo 为家具物品的图像添加字幕。

我们将使用模型的视觉功能来分析图像并生成字幕。

加载数据

在此示例中,我们将使用亚马逊家具数据集。

dataset_path = "data/amazon_furniture_dataset.csv"
df = pd.read_csv(dataset_path)
df.head()
asin url title brand price availability categories primary_image images upc ... color material style important_information product_overview about_item description specifications uniq_id scraped_at
0 B0CJHKVG6P https://www.amazon.com/dp/B0CJHKVG6P GOYMFK 1 件式独立式鞋架,多层... GOYMFK $24.99 仅剩 13 件库存 - 立即订购。 ['家居与厨房', '收纳与整理', '... https://m.media-amazon.com/images/I/416WaLx10j... ['https://m.media-amazon.com/images/I/416WaLx1... NaN ... 白色 金属 现代 [] [{'品牌': ' GOYMFK '}, {'颜色': ' 白色 '}, ... ['多层:提供充足的存储空间... 多双鞋子、外套、帽子和其他物品 E... ['品牌: GOYMFK', '颜色: 白色', '材质: M... 02593e81-5c09-5069-8516-b0b29f439ded 2024-02-02 15:15:08
1 B0B66QHB23 https://www.amazon.com/dp/B0B66QHB23 subrtex 皮革餐厅,餐椅套装 o... subrtex NaN NaN ['家居与厨房', '家具', '餐厅家具 F... https://m.media-amazon.com/images/I/31SejUEWY7... ['https://m.media-amazon.com/images/I/31SejUEW... NaN ... 黑色 海绵 黑色橡胶木 [] NaN ['【易于组装】:2 件餐椅套装... subrtex 餐椅 2 件套 ['品牌: subrtex', '颜色: 黑色', '产品尺寸... 5938d217-b8c5-5d3e-b1cf-e28e340f292e 2024-02-02 15:15:09
2 B0BXRTWLYK https://www.amazon.com/dp/B0BXRTWLYK 植物换盆垫 MUYETOL 防水移植... MUYETOL $5.98 有库存 ['庭院、草坪与花园', '户外装饰', '门... https://m.media-amazon.com/images/I/41RgefVq70... ['https://m.media-amazon.com/images/I/41RgefVq... NaN ... 绿色 聚乙烯 现代 [] [{'品牌': ' MUYETOL '}, {'尺寸': ' 26.8*26.8 ... ['植物换盆垫尺寸:26.8 英寸 x 26.8 英寸,方... NaN ['品牌: MUYETOL', '尺寸: 26.8*26.8', '商品重量... b2ede786-3f51-5a45-9a5b-bcf856958cd8 2024-02-02 15:15:09
3 B0C1MRB2M8 https://www.amazon.com/dp/B0C1MRB2M8 匹克球门垫,欢迎门垫吸水... VEWETOL $13.99 仅剩 10 件库存 - 立即订购。 ['庭院、草坪与花园', '户外装饰', '门... https://m.media-amazon.com/images/I/61vz1Igler... ['https://m.media-amazon.com/images/I/61vz1Igl... NaN ... A5589 橡胶 现代 [] [{'品牌': ' VEWETOL '}, {'尺寸': ' 16*24 英寸 ... ['规格:16x24 英寸 ', " 高品质... 装饰性门垫具有微妙的纹理... ['品牌: VEWETOL', '尺寸: 16*24 英寸', '材质... 8fd9377b-cfa6-5f10-835c-6b8eca2816b5 2024-02-02 15:15:10
4 B0CG1N9QRC https://www.amazon.com/dp/B0CG1N9QRC JOIN IRON 可折叠电视托盘,用餐套装,4 件套... JOIN IRON Store $89.99 通常在 5 到 6 周内发货 ['家居与厨房', '家具', '游戏与娱乐... https://m.media-amazon.com/images/I/41p4d4VJnN... ['https://m.media-amazon.com/images/I/41p4d4VJ... NaN ... 灰色 4 件套 X 经典风格 [] NaN ['包括 4 个折叠电视托盘桌和一个 C... 带配套储物架的四件套折叠托盘... ['品牌: JOIN IRON', '形状: 矩形', 'In... bdc9aa30-9439-50dc-8e89-213ea211d66a 2024-02-02 15:15:11

5 行 × 25 列

处理步骤

同样,我们将首先使用聊天完成端点准备我们的请求,然后在之后创建批处理文件。

caption_system_prompt = '''
Your goal is to generate short, descriptive captions for images of items.
You will be provided with an item image and the name of that item and you will output a caption that captures the most important information about the item.
If there are multiple items depicted, refer to the name provided to understand which item you should describe.
Your generated caption should be short (1 sentence), and include only the most important information about the item.
The most important information could be: the type of item, the style (if mentioned), the material or color if especially relevant and/or any distinctive features.
Keep it short and to the point.
'''

def get_caption(img_url, title):
    response = client.chat.completions.create(
    model="gpt-4o-mini",
    temperature=0.2,
    max_tokens=300,
    messages=[
        {
            "role": "system",
            "content": caption_system_prompt
        },
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": title
                },
                # The content type should be "image_url" to use gpt-4-turbo's vision capabilities
                {
                    "type": "image_url",
                    "image_url": {
                        "url": img_url
                    }
                },
            ],
        }
    ]
    )

    return response.choices[0].message.content
# Testing on a few images
for _, row in df[:5].iterrows():
    img_url = row['primary_image']
    caption = get_caption(img_url, row['title'])
    img = Image(url=img_url)
    display(img)
    print(f"CAPTION: {caption}\n\n")
CAPTION: A stylish white free-standing shoe rack featuring multiple layers and eight double hooks, perfect for organizing shoes and accessories in living rooms, bathrooms, or hallways.


CAPTION: Set of 2 black leather dining chairs featuring a sleek design with vertical stitching and sturdy wooden legs.


CAPTION: The MUYETOL Plant Repotting Mat is a waterproof, portable, and foldable gardening work mat measuring 26.8" x 26.8", designed for easy soil changing and indoor transplanting.


CAPTION: Absorbent non-slip doormat featuring the phrase "It's a good day to play PICKLEBALL" with paddle graphics, measuring 16x24 inches.


CAPTION: Set of 4 foldable TV trays in grey, featuring a compact design with a stand for easy storage, perfect for small spaces.


创建批量作业

与第一个示例一样,我们将创建一个 json 任务数组以生成 jsonl 文件,并使用它来创建批量作业。

# Creating an array of json tasks

tasks = []

for index, row in df.iterrows():
    
    title = row['title']
    img_url = row['primary_image']
    
    task = {
        "custom_id": f"task-{index}",
        "method": "POST",
        "url": "/v1/chat/completions",
        "body": {
            # This is what you would have in your Chat Completions API call
            "model": "gpt-4o-mini",
            "temperature": 0.2,
            "max_tokens": 300,
            "messages": [
                {
                    "role": "system",
                    "content": caption_system_prompt
                },
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": title
                        },
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": img_url
                            }
                        },
                    ],
                }
            ]            
        }
    }
    
    tasks.append(task)
# Creating the file

file_name = "data/batch_tasks_furniture.jsonl"

with open(file_name, 'w') as file:
    for obj in tasks:
        file.write(json.dumps(obj) + '\n')
# Uploading the file 

batch_file = client.files.create(
  file=open(file_name, "rb"),
  purpose="batch"
)
# Creating the job

batch_job = client.batches.create(
  input_file_id=batch_file.id,
  endpoint="/v1/chat/completions",
  completion_window="24h"
)
batch_job = client.batches.retrieve(batch_job.id)
print(batch_job)

获取结果

与第一个示例一样,我们可以在批量作业完成后检索结果。

提醒:结果的顺序与输入文件中的顺序不同。请务必检查 custom_id 以将结果与输入请求匹配

# Retrieving result file

result_file_id = batch_job.output_file_id
result = client.files.content(result_file_id).content
result_file_name = "data/batch_job_results_furniture.jsonl"

with open(result_file_name, 'wb') as file:
    file.write(result)
# Loading data from saved file

results = []
with open(result_file_name, 'r') as file:
    for line in file:
        # Parsing the JSON string into a dict and appending to the list of results
        json_object = json.loads(line.strip())
        results.append(json_object)
# Reading only the first results
for res in results[:5]:
    task_id = res['custom_id']
    # Getting index from task id
    index = task_id.split('-')[-1]
    result = res['response']['body']['choices'][0]['message']['content']
    item = df.iloc[int(index)]
    img_url = item['primary_image']
    img = Image(url=img_url)
    display(img)
    print(f"CAPTION: {result}\n\n")
CAPTION: Brushed brass pedestal towel rack with a sleek, modern design, featuring multiple bars for hanging towels, measuring 25.75 x 14.44 x 32 inches.


CAPTION: Black round end table featuring a tempered glass top and a metal frame, with a lower shelf for additional storage.


CAPTION: Black collapsible and height-adjustable telescoping stool, portable and designed for makeup artists and hairstylists, shown in various stages of folding for easy transport.


CAPTION: Ergonomic pink gaming chair featuring breathable fabric, adjustable height, lumbar support, a footrest, and a swivel recliner function.


CAPTION: A set of two Glitzhome adjustable bar stools featuring a mid-century modern design with swivel seats, PU leather upholstery, and wooden backrests.


总结

在本食谱中,我们已经看到了如何使用新的批量 API 的两个示例,但请记住,批量 API 的工作方式与聊天完成端点相同,支持相同的参数和大多数最新的模型 (gpt-4o、gpt-4o-mini、gpt-4-turbo、gpt-3.5-turbo...)。

通过使用此 API,您可以显着降低成本,因此我们建议将每个可以异步发生的工作负载切换到使用此新 API 的批量作业。