此笔记本用作预处理和分析用于微调聊天模型的聊天数据集的工具。它检查格式错误,提供基本统计信息,并估计微调成本的令牌计数。此处显示的方法对应于 gpt-3.5-turbo 的当前微调方法。有关 babbage-002 和 davinci-002 等模型的旧版微调,请参阅旧版微调。
此笔记本用作预处理和分析用于微调聊天模型的聊天数据集的工具。它检查格式错误,提供基本统计信息,并估计微调成本的令牌计数。此处显示的方法对应于 gpt-3.5-turbo 的当前微调方法。有关 babbage-002 和 davinci-002 等模型的旧版微调,请参阅旧版微调。
import json
import tiktoken # for token counting
import numpy as np
from collections import defaultdict
我们首先从一个示例 JSONL 文件加载聊天数据集。
data_path = "data/toy_chat_fine_tuning.jsonl"
# Load the dataset
with open(data_path, 'r', encoding='utf-8') as f:
dataset = [json.loads(line) for line in f]
# Initial dataset stats
print("Num examples:", len(dataset))
print("First example:")
for message in dataset[0]["messages"]:
print(message)
Num examples: 5 First example: {'role': 'system', 'content': 'You are a happy assistant that puts a positive spin on everything.'} {'role': 'user', 'content': 'I fell off my bike today.'} {'role': 'assistant', 'content': "It's great that you're getting exercise outdoors!"}
我们可以执行各种错误检查,以验证数据集中的每个对话是否符合微调 API 期望的格式。错误根据其性质进行分类,以便于调试。
dict
)。错误类型:data_type
。messages
列表。错误类型:missing_messages_list
。messages
列表中的每条消息是否包含键 role
和 content
。错误类型:message_missing_key
。role
、content
、weight
、function_call
和 name
之外的键,则记录。错误类型:message_unrecognized_key
。role
是 “system”、“user” 或 “assistant” 之一。错误类型:unrecognized_role
。content
是否具有文本数据并且是字符串。错误类型:missing_content
。example_missing_assistant_message
。以下代码执行这些检查,并输出打印的每种错误类型的计数。这对于调试和确保数据集已准备好进行下一步非常有用。
# Format error checks
format_errors = defaultdict(int)
for ex in dataset:
if not isinstance(ex, dict):
format_errors["data_type"] += 1
continue
messages = ex.get("messages", None)
if not messages:
format_errors["missing_messages_list"] += 1
continue
for message in messages:
if "role" not in message or "content" not in message:
format_errors["message_missing_key"] += 1
if any(k not in ("role", "content", "name", "function_call", "weight") for k in message):
format_errors["message_unrecognized_key"] += 1
if message.get("role", None) not in ("system", "user", "assistant", "function"):
format_errors["unrecognized_role"] += 1
content = message.get("content", None)
function_call = message.get("function_call", None)
if (not content and not function_call) or not isinstance(content, str):
format_errors["missing_content"] += 1
if not any(message.get("role", None) == "assistant" for message in messages):
format_errors["example_missing_assistant_message"] += 1
if format_errors:
print("Found errors:")
for k, v in format_errors.items():
print(f"{k}: {v}")
else:
print("No errors found")
No errors found
让我们定义一些在笔记本的其余部分中使用的有用实用程序。
encoding = tiktoken.get_encoding("cl100k_base")
# not exact!
# simplified from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, tokens_per_message=3, tokens_per_name=1):
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3
return num_tokens
def num_assistant_tokens_from_messages(messages):
num_tokens = 0
for message in messages:
if message["role"] == "assistant":
num_tokens += len(encoding.encode(message["content"]))
return num_tokens
def print_distribution(values, name):
print(f"\n#### Distribution of {name}:")
print(f"min / max: {min(values)}, {max(values)}")
print(f"mean / median: {np.mean(values)}, {np.median(values)}")
print(f"p5 / p95: {np.quantile(values, 0.1)}, {np.quantile(values, 0.9)}")
通过一些轻量级分析,我们可以识别数据集中的潜在问题,例如缺少消息,并提供有关消息和令牌计数的统计见解。
# Warnings and tokens counts
n_missing_system = 0
n_missing_user = 0
n_messages = []
convo_lens = []
assistant_message_lens = []
for ex in dataset:
messages = ex["messages"]
if not any(message["role"] == "system" for message in messages):
n_missing_system += 1
if not any(message["role"] == "user" for message in messages):
n_missing_user += 1
n_messages.append(len(messages))
convo_lens.append(num_tokens_from_messages(messages))
assistant_message_lens.append(num_assistant_tokens_from_messages(messages))
print("Num examples missing system message:", n_missing_system)
print("Num examples missing user message:", n_missing_user)
print_distribution(n_messages, "num_messages_per_example")
print_distribution(convo_lens, "num_total_tokens_per_example")
print_distribution(assistant_message_lens, "num_assistant_tokens_per_example")
n_too_long = sum(l > 16385 for l in convo_lens)
print(f"\n{n_too_long} examples may be over the 16,385 token limit, they will be truncated during fine-tuning")
Num examples missing system message: 1 Num examples missing user message: 1 #### Distribution of num_messages_per_example: min / max: 2, 9 mean / median: 3.8, 3.0 p5 / p95: 2.0, 6.6000000000000005 #### Distribution of num_total_tokens_per_example: min / max: 26, 8032 mean / median: 1648.4, 45.0 p5 / p95: 26.8, 4863.6 #### Distribution of num_assistant_tokens_per_example: min / max: 4, 8000 mean / median: 1610.2, 10.0 p5 / p95: 6.0, 4811.200000000001 0 examples may be over the 16,385 token limit, they will be truncated during fine-tuning
在最后一部分中,我们估计将用于微调的令牌总数,这使我们能够估算成本。值得注意的是,微调作业的持续时间也会随着令牌计数而增加。
# Pricing and default n_epochs estimate
MAX_TOKENS_PER_EXAMPLE = 16385
TARGET_EPOCHS = 3
MIN_TARGET_EXAMPLES = 100
MAX_TARGET_EXAMPLES = 25000
MIN_DEFAULT_EPOCHS = 1
MAX_DEFAULT_EPOCHS = 25
n_epochs = TARGET_EPOCHS
n_train_examples = len(dataset)
if n_train_examples * TARGET_EPOCHS < MIN_TARGET_EXAMPLES:
n_epochs = min(MAX_DEFAULT_EPOCHS, MIN_TARGET_EXAMPLES // n_train_examples)
elif n_train_examples * TARGET_EPOCHS > MAX_TARGET_EXAMPLES:
n_epochs = max(MIN_DEFAULT_EPOCHS, MAX_TARGET_EXAMPLES // n_train_examples)
n_billing_tokens_in_dataset = sum(min(MAX_TOKENS_PER_EXAMPLE, length) for length in convo_lens)
print(f"Dataset has ~{n_billing_tokens_in_dataset} tokens that will be charged for during training")
print(f"By default, you'll train for {n_epochs} epochs on this dataset")
print(f"By default, you'll be charged for ~{n_epochs * n_billing_tokens_in_dataset} tokens")
Dataset has ~4306 tokens that will be charged for during training By default, you'll train for 20 epochs on this dataset By default, you'll be charged for ~86120 tokens
请访问 https://openai.com/pricing 估算总成本。