使用多步骤提示编写单元测试

2022年11月15日
在 Github 中打开

复杂任务(例如编写单元测试)可以从多步骤提示中受益。与单个提示相比,多步骤提示从 GPT 生成文本,然后将该输出文本反馈到后续提示中。这在您希望 GPT 在回答之前进行推理,或者在执行计划之前进行头脑风暴的情况下很有帮助。

在本笔记本中,我们使用 3 步提示在 Python 中编写单元测试,步骤如下

  1. 解释:给定一个 Python 函数,我们要求 GPT 解释该函数的作用及其原因。
  2. 计划:我们要求 GPT 为该函数计划一组单元测试。
    • 如果计划太短,我们会要求 GPT 详细说明更多单元测试的想法。
  3. 执行:最后,我们指示 GPT 编写单元测试,以涵盖计划的案例。

代码示例说明了链式多步骤提示的一些修饰

  • 条件分支(例如,仅当第一个计划太短时才要求详细说明)
  • 为不同步骤选择不同的模型
  • 一项检查,如果输出不令人满意,则重新运行该函数(例如,如果输出代码无法被 Python 的 ast 模块解析)
  • 流式输出,以便您可以在输出完全生成之前开始阅读输出(对于长的多步骤输出很有用)
# imports needed to run the code in this notebook
import ast  # used for detecting whether generated Python code is valid
import os
from openai import OpenAI

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY", "<your OpenAI API key if not set as env var>"))

color_prefix_by_role = {
    "system": "\033[0m",  # gray
    "user": "\033[0m",  # gray
    "assistant": "\033[92m",  # green
}


def print_messages(messages, color_prefix_by_role=color_prefix_by_role) -> None:
    """Prints messages sent to or from GPT."""
    for message in messages:
        role = message["role"]
        color_prefix = color_prefix_by_role[role]
        content = message["content"]
        print(f"{color_prefix}\n[{role}]\n{content}")


def print_message_delta(delta, color_prefix_by_role=color_prefix_by_role) -> None:
    """Prints a chunk of messages streamed back from GPT."""
    if "role" in delta:
        role = delta["role"]
        color_prefix = color_prefix_by_role[role]
        print(f"{color_prefix}\n[{role}]\n", end="")
    elif "content" in delta:
        content = delta["content"]
        print(content, end="")
    else:
        pass


# example of a function that uses a multi-step prompt to write unit tests
def unit_tests_from_function(
    function_to_test: str,  # Python function to test, as a string
    unit_test_package: str = "pytest",  # unit testing package; use the name as it appears in the import statement
    approx_min_cases_to_cover: int = 7,  # minimum number of test case categories to cover (approximate)
    print_text: bool = False,  # optionally prints text; helpful for understanding the function & debugging
    explain_model: str = "gpt-3.5-turbo",  # model used to generate text plans in step 1
    plan_model: str = "gpt-3.5-turbo",  # model used to generate text plans in steps 2 and 2b
    execute_model: str = "gpt-3.5-turbo",  # model used to generate code in step 3
    temperature: float = 0.4,  # temperature = 0 can sometimes get stuck in repetitive loops, so we use 0.4
    reruns_if_fail: int = 1,  # if the output code cannot be parsed, this will re-run the function up to N times
) -> str:
    """Returns a unit test for a given Python function, using a 3-step GPT prompt."""

    # Step 1: Generate an explanation of the function

    # create a markdown-formatted message that asks GPT to explain the function, formatted as a bullet list
    explain_system_message = {
        "role": "system",
        "content": "You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You carefully explain code with great detail and accuracy. You organize your explanations in markdown-formatted, bulleted lists.",
    }
    explain_user_message = {
        "role": "user",
        "content": f"""Please explain the following Python function. Review what each element of the function is doing precisely and what the author's intentions may have been. Organize your explanation as a markdown-formatted, bulleted list.

```python
{function_to_test}
```""",
    }
    explain_messages = [explain_system_message, explain_user_message]
    if print_text:
        print_messages(explain_messages)

    explanation_response = client.chat.completions.create(model=explain_model,
    messages=explain_messages,
    temperature=temperature,
    stream=True)
    explanation = ""
    for chunk in explanation_response:
        delta = chunk.choices[0].delta
        if print_text:
            print_message_delta(delta)
        if "content" in delta:
            explanation += delta.content
    explain_assistant_message = {"role": "assistant", "content": explanation}

    # Step 2: Generate a plan to write a unit test

    # Asks GPT to plan out cases the units tests should cover, formatted as a bullet list
    plan_user_message = {
        "role": "user",
        "content": f"""A good unit test suite should aim to:
- Test the function's behavior for a wide range of possible inputs
- Test edge cases that the author may not have foreseen
- Take advantage of the features of `{unit_test_package}` to make the tests easy to write and maintain
- Be easy to read and understand, with clean code and descriptive names
- Be deterministic, so that the tests always pass or fail in the same way

To help unit test the function above, list diverse scenarios that the function should be able to handle (and under each scenario, include a few examples as sub-bullets).""",
    }
    plan_messages = [
        explain_system_message,
        explain_user_message,
        explain_assistant_message,
        plan_user_message,
    ]
    if print_text:
        print_messages([plan_user_message])
    plan_response = client.chat.completions.create(model=plan_model,
    messages=plan_messages,
    temperature=temperature,
    stream=True)
    plan = ""
    for chunk in plan_response:
        delta = chunk.choices[0].delta
        if print_text:
            print_message_delta(delta)
        if "content" in delta:
            explanation += delta.content
    plan_assistant_message = {"role": "assistant", "content": plan}

    # Step 2b: If the plan is short, ask GPT to elaborate further
    # this counts top-level bullets (e.g., categories), but not sub-bullets (e.g., test cases)
    num_bullets = max(plan.count("\n-"), plan.count("\n*"))
    elaboration_needed = num_bullets < approx_min_cases_to_cover
    if elaboration_needed:
        elaboration_user_message = {
            "role": "user",
            "content": f"""In addition to those scenarios above, list a few rare or unexpected edge cases (and as before, under each edge case, include a few examples as sub-bullets).""",
        }
        elaboration_messages = [
            explain_system_message,
            explain_user_message,
            explain_assistant_message,
            plan_user_message,
            plan_assistant_message,
            elaboration_user_message,
        ]
        if print_text:
            print_messages([elaboration_user_message])
        elaboration_response = client.chat.completions.create(model=plan_model,
        messages=elaboration_messages,
        temperature=temperature,
        stream=True)
        elaboration = ""
        for chunk in elaboration_response:
            delta = chunk.choices[0].delta
        if print_text:
            print_message_delta(delta)
        if "content" in delta:
            explanation += delta.content
        elaboration_assistant_message = {"role": "assistant", "content": elaboration}

    # Step 3: Generate the unit test

    # create a markdown-formatted prompt that asks GPT to complete a unit test
    package_comment = ""
    if unit_test_package == "pytest":
        package_comment = "# below, each test case is represented by a tuple passed to the @pytest.mark.parametrize decorator"
    execute_system_message = {
        "role": "system",
        "content": "You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You write careful, accurate unit tests. When asked to reply only with code, you write all of your code in a single block.",
    }
    execute_user_message = {
        "role": "user",
        "content": f"""Using Python and the `{unit_test_package}` package, write a suite of unit tests for the function, following the cases above. Include helpful comments to explain each line. Reply only with code, formatted as follows:

```python
# imports
import {unit_test_package}  # used for our unit tests
{{insert other imports as needed}}

# function to test
{function_to_test}

# unit tests
{package_comment}
{{insert unit test code here}}
```""",
    }
    execute_messages = [
        execute_system_message,
        explain_user_message,
        explain_assistant_message,
        plan_user_message,
        plan_assistant_message,
    ]
    if elaboration_needed:
        execute_messages += [elaboration_user_message, elaboration_assistant_message]
    execute_messages += [execute_user_message]
    if print_text:
        print_messages([execute_system_message, execute_user_message])

    execute_response = client.chat.completions.create(model=execute_model,
        messages=execute_messages,
        temperature=temperature,
        stream=True)
    execution = ""
    for chunk in execute_response:
        delta = chunk.choices[0].delta
        if print_text:
            print_message_delta(delta)
        if delta.content:
            execution += delta.content

    # check the output for errors
    code = execution.split("```python")[1].split("```")[0].strip()
    try:
        ast.parse(code)
    except SyntaxError as e:
        print(f"Syntax error in generated code: {e}")
        if reruns_if_fail > 0:
            print("Rerunning...")
            return unit_tests_from_function(
                function_to_test=function_to_test,
                unit_test_package=unit_test_package,
                approx_min_cases_to_cover=approx_min_cases_to_cover,
                print_text=print_text,
                explain_model=explain_model,
                plan_model=plan_model,
                execute_model=execute_model,
                temperature=temperature,
                reruns_if_fail=reruns_if_fail
                - 1,  # decrement rerun counter when calling again
            )

    # return the unit test as a string
    return code
example_function = """def pig_latin(text):
    def translate(word):
        vowels = 'aeiou'
        if word[0] in vowels:
            return word + 'way'
        else:
            consonants = ''
            for letter in word:
                if letter not in vowels:
                    consonants += letter
                else:
                    break
            return word[len(consonants):] + consonants + 'ay'

    words = text.lower().split()
    translated_words = [translate(word) for word in words]
    return ' '.join(translated_words)
"""

unit_tests = unit_tests_from_function(
    example_function,
    approx_min_cases_to_cover=10,
    print_text=True
)

[system]
You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You carefully explain code with great detail and accuracy. You organize your explanations in markdown-formatted, bulleted lists.

[user]
Please explain the following Python function. Review what each element of the function is doing precisely and what the author's intentions may have been. Organize your explanation as a markdown-formatted, bulleted list.

```python
def pig_latin(text):
    def translate(word):
        vowels = 'aeiou'
        if word[0] in vowels:
            return word + 'way'
        else:
            consonants = ''
            for letter in word:
                if letter not in vowels:
                    consonants += letter
                else:
                    break
            return word[len(consonants):] + consonants + 'ay'

    words = text.lower().split()
    translated_words = [translate(word) for word in words]
    return ' '.join(translated_words)

```

[user]
A good unit test suite should aim to:
- Test the function's behavior for a wide range of possible inputs
- Test edge cases that the author may not have foreseen
- Take advantage of the features of `pytest` to make the tests easy to write and maintain
- Be easy to read and understand, with clean code and descriptive names
- Be deterministic, so that the tests always pass or fail in the same way

To help unit test the function above, list diverse scenarios that the function should be able to handle (and under each scenario, include a few examples as sub-bullets).

[user]
In addition to those scenarios above, list a few rare or unexpected edge cases (and as before, under each edge case, include a few examples as sub-bullets).

[system]
You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You write careful, accurate unit tests. When asked to reply only with code, you write all of your code in a single block.

[user]
Using Python and the `pytest` package, write a suite of unit tests for the function, following the cases above. Include helpful comments to explain each line. Reply only with code, formatted as follows:

```python
# imports
import pytest  # used for our unit tests
{insert other imports as needed}

# function to test
def pig_latin(text):
    def translate(word):
        vowels = 'aeiou'
        if word[0] in vowels:
            return word + 'way'
        else:
            consonants = ''
            for letter in word:
                if letter not in vowels:
                    consonants += letter
                else:
                    break
            return word[len(consonants):] + consonants + 'ay'

    words = text.lower().split()
    translated_words = [translate(word) for word in words]
    return ' '.join(translated_words)


# unit tests
# below, each test case is represented by a tuple passed to the @pytest.mark.parametrize decorator
{insert unit test code here}
```
execute messages: [{'role': 'system', 'content': 'You are a world-class Python developer with an eagle eye for unintended bugs and edge cases. You write careful, accurate unit tests. When asked to reply only with code, you write all of your code in a single block.'}, {'role': 'user', 'content': "Please explain the following Python function. Review what each element of the function is doing precisely and what the author's intentions may have been. Organize your explanation as a markdown-formatted, bulleted list.\n\n```python\ndef pig_latin(text):\n    def translate(word):\n        vowels = 'aeiou'\n        if word[0] in vowels:\n            return word + 'way'\n        else:\n            consonants = ''\n            for letter in word:\n                if letter not in vowels:\n                    consonants += letter\n                else:\n                    break\n            return word[len(consonants):] + consonants + 'ay'\n\n    words = text.lower().split()\n    translated_words = [translate(word) for word in words]\n    return ' '.join(translated_words)\n\n```"}, {'role': 'assistant', 'content': ''}, {'role': 'user', 'content': "A good unit test suite should aim to:\n- Test the function's behavior for a wide range of possible inputs\n- Test edge cases that the author may not have foreseen\n- Take advantage of the features of `pytest` to make the tests easy to write and maintain\n- Be easy to read and understand, with clean code and descriptive names\n- Be deterministic, so that the tests always pass or fail in the same way\n\nTo help unit test the function above, list diverse scenarios that the function should be able to handle (and under each scenario, include a few examples as sub-bullets)."}, {'role': 'assistant', 'content': ''}, {'role': 'user', 'content': 'In addition to those scenarios above, list a few rare or unexpected edge cases (and as before, under each edge case, include a few examples as sub-bullets).'}, {'role': 'assistant', 'content': ''}, {'role': 'user', 'content': "Using Python and the `pytest` package, write a suite of unit tests for the function, following the cases above. Include helpful comments to explain each line. Reply only with code, formatted as follows:\n\n```python\n# imports\nimport pytest  # used for our unit tests\n{insert other imports as needed}\n\n# function to test\ndef pig_latin(text):\n    def translate(word):\n        vowels = 'aeiou'\n        if word[0] in vowels:\n            return word + 'way'\n        else:\n            consonants = ''\n            for letter in word:\n                if letter not in vowels:\n                    consonants += letter\n                else:\n                    break\n            return word[len(consonants):] + consonants + 'ay'\n\n    words = text.lower().split()\n    translated_words = [translate(word) for word in words]\n    return ' '.join(translated_words)\n\n\n# unit tests\n# below, each test case is represented by a tuple passed to the @pytest.mark.parametrize decorator\n{insert unit test code here}\n```"}]
print(unit_tests)
# imports
import pytest

# function to test
def pig_latin(text):
    def translate(word):
        vowels = 'aeiou'
        if word[0] in vowels:
            return word + 'way'
        else:
            consonants = ''
            for letter in word:
                if letter not in vowels:
                    consonants += letter
                else:
                    break
            return word[len(consonants):] + consonants + 'ay'

    words = text.lower().split()
    translated_words = [translate(word) for word in words]
    return ' '.join(translated_words)


# unit tests
@pytest.mark.parametrize('text, expected', [
    ('hello world', 'ellohay orldway'),  # basic test case
    ('Python is awesome', 'ythonPay isway awesomeway'),  # test case with multiple words
    ('apple', 'appleway'),  # test case with a word starting with a vowel
    ('', ''),  # test case with an empty string
    ('123', '123'),  # test case with non-alphabetic characters
    ('Hello World!', 'elloHay orldWay!'),  # test case with punctuation
    ('The quick brown fox', 'ethay ickquay ownbray oxfay'),  # test case with mixed case words
    ('a e i o u', 'away eway iway oway uway'),  # test case with all vowels
    ('bcd fgh jkl mnp', 'bcday fghay jklway mnpay'),  # test case with all consonants
])
def test_pig_latin(text, expected):
    assert pig_latin(text) == expected

请务必在使用任何代码之前进行检查,因为 GPT 会犯很多错误(尤其是在像这样的基于字符的任务上)。为了获得最佳结果,请使用最强大的模型(截至 2023 年 5 月的 GPT-4)。